Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894245

RESUMEN

We have performed a characterization of cultivated haloalkalitolerant fungi from the sediments of Big Tambukan Lake in order to assess their biodiversity and antimicrobial activity. This saline, slightly alkaline lake is known as a source of therapeutic sulfide mud used in sanatoria of the Caucasian Mineral Waters, Russia. Though data on bacteria and algae observed in this lake are available in the literature, data on fungi adapted to the conditions of the lake are lacking. The diversity of haloalkalitolerant fungi was low and represented by ascomycetes of the genera Acremonium, Alternaria, Aspergillus, Chordomyces, Emericellopsis, Fusarium, Gibellulopsis, Myriodontium, Penicillium, and Pseudeurotium. Most of the fungi were characterized by moderate alkaline resistance, and they tolerated NaCl concentrations up to 10% w/v. The analysis of the antimicrobial activity of fungi showed that 87.5% of all strains were active against Bacillus subtilis, and 39.6% were also determined to be effective against Escherichia coli. The majority of the strains were also active against Aspergillus niger and Candida albicans, about 66.7% and 62.5%, respectively. These studies indicate, for the first time, the presence of polyextremotolerant fungi in the sediments of Big Tambukan Lake, which probably reflects their involvement in the formation of therapeutic muds.

2.
J Fungi (Basel) ; 8(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35887416

RESUMEN

The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, Sa-HFB1, from an alkaliphilic fungus, Sodiomyces alkalinus. A potential antifungal effect against pathogenic and opportunistic fungi strains was determined. The MICs of Sa-HFB1 against opportunistic and clinical fungi ranged from 1 to 8 µg/mL and confirmed its higher activity against both non- and clinical isolates. The highest level of antifungal activity (MIC 1 µg/mL) was demonstrated for the clinical isolate Cryptococcus neoformans 297 m. The hydrophobin Sa-HFB1 may be partly responsible for the reported antifungal activity of S. alkalinus, and may serve as a potential source of lead compounds, meaning that it can be developed as an antifungal drug candidate.

3.
Molecules ; 27(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268835

RESUMEN

Features of the biochemical adaptations of alkaliphilic fungi to exist in extreme environments could promote the production of active antibiotic compounds with the potential to control microorganisms, causing infections associated with health care. Thirty-eight alkaliphilic and alkalitolerant Emericellopsis strains (E. alkalina, E. cf. maritima, E. cf. terricola, Emericellopsis sp.) isolated from different saline soda soils and belonging to marine, terrestrial, and soda soil ecological clades were investigated for emericellipsin A (EmiA) biosynthesis, an antifungal peptaibol previously described for Emericellopsis alkalina. The analysis of the Emericellopsis sp. strains belonging to marine and terrestrial clades from chloride soils revealed another novel form with a mass of 1032.7 Da, defined by MALDI-TOF Ms/Ms spectrometers, as the EmiA lacked a hydroxyl (dEmiA). EmiA displayed strong inhibitory effects on cell proliferation and viability of HCT 116 cells in a dose- and time-dependent manners and induced apoptosis.


Asunto(s)
Antifúngicos
4.
J Fungi (Basel) ; 7(2)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33669976

RESUMEN

Novel antimicrobial peptides with antifungal and cytotoxic activity were derived from the alkalophilic fungus Emericellopsis alkalina VKPM F1428. We previously reported that this strain produced emericellipsin A (EmiA), which has strong antifungal and cytotoxic properties. Further analyses of the metabolites obtained under a special alkaline medium resulted in the isolation of four new homologous (Emi B-E). In this work, we report the complete primary structure and detailed biological activity for the newly synthesized nonribosomal antimicrobial peptides called emericellipsins B-E. The inhibitory activity of themajor compound, EmiA, against drug-resistant pathogenic fungi was similar to that of amphotericin B (AmpB). At the same time, EmiA had no hemolytic activity towards human erythrocytes. In addition, EmiA demonstrated low cytotoxic activity towards the normal HPF line, but possessed cancer selectivity to the K-562 and HCT-116 cell lines. Emericillipsins from the alkalophilic fungus Emericellopsis alkaline are promising treatment alternatives to licensed antifungal drugs for invasive mycosis therapy, especially for multidrug-resistant aspergillosis and cryptococcosis.

5.
Fungal Biol ; 124(10): 884-891, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32948276

RESUMEN

The accumulation of low molecular weight cytoprotective compounds (osmolytes) and changes in the membrane lipids composition are of key importance for the adaptation to stress impacts. However, the reason behind the wide variety of osmolytes present in the cell remains unclear. We suggest that specific functions of osmolytes can be revealed by studying the adaptation mechanisms of the mycelial fungus Emericellopsis alkalina (Hypocreales, Ascomycota) that is resistant to both alkaline pH values and high sodium chloride concentrations. It has been established that the fungus uses different osmolytes to adapt to ambient pH and NaCl concentration. Arabitol was predominant osmolyte in alkaline conditions, while mannitol prevailed in acidic conditions. On the salt-free medium mannitol was the main osmolyte; under optimal conditions (pH 10.2; 0.4 M NaCl) arabitol and mannitol were both predominant. Higher NaCl concentrations (1.0-1.5 M) resulted in the accumulation of low molecular weight polyol - erythritol, which amounted up to 12-14%, w/w. On the contrary, changes in the composition of membrane lipids were limited under pH and NaCl impacts; only higher NaCl concentrations led to the increase in the degree of unsaturation of membrane lipids. Results obtained indicated the key role of the osmolytes in the adaptation to the ambient pH and osmotic impacts.


Asunto(s)
Adaptación Fisiológica , Membrana Celular/química , Hypocreales , Lípidos de la Membrana , Medios de Cultivo , Concentración de Iones de Hidrógeno , Hypocreales/química , Lípidos de la Membrana/química , Cloruro de Sodio
6.
Molecules ; 23(11)2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30373232

RESUMEN

Soil fungi are known to contain a rich variety of defense metabolites that allow them to compete with other organisms (fungi, bacteria, nematodes, and insects) and help them occupy more preferential areas at the expense of effective antagonism. These compounds possess antibiotic activity towards a wide range of other microbes, particularly fungi that belong to different taxonomical units. These compounds include peptaibols, which are non-ribosomal synthesized polypeptides containing non-standard amino acid residues (alpha-aminoisobutyric acid mandatory) and some posttranslational modifications. We isolated a novel antibiotic peptide from the culture medium of Emericellopsis alkalina, an alkalophilic strain. This peptide, called emericellipsin A, exhibited a strong antifungal effect against the yeast Candida albicans, the mold fungus Aspergillus niger, and human pathogen clinical isolates. It also exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. Additionally, emericellipsin A showed a significant cytotoxic effect and was highly active against Hep G2 and HeLa tumor cell lines. We used NMR spectroscopy to reveal that this peptaibol is nine amino acid residues long and contains non-standard amino acids. The mode of molecular action of emericellipsin A is most likely associated with its effects on the membranes of cells. Emericellipsin A is rather short peptaibol and could be useful for the development of antifungal, antibacterial, or anti-tumor remedies.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Ascomicetos/química , Antiinfecciosos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Ascomicetos/metabolismo , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Hongos/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estructura Molecular
7.
IMA Fungus ; 4(2): 213-28, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24563834

RESUMEN

Surveying the fungi of alkaline soils in Siberia, Trans-Baikal regions (Russia), the Aral lake (Kazakhstan), and Eastern Mongolia, we report an abundance of alkalitolerant species representing the Emericellopsis-clade within the Acremonium cluster of fungi (order Hypocreales). On an alkaline medium (pH ca. 10), 34 acremonium-like fungal strains were obtained. One of these was able to develop a sexual morph and was shown to be a new member of the genus Emericellopsis, described here as E. alkalina sp. nov. Previous studies showed two distinct ecological clades within Emericellopsis, one consisting of terrestrial isolates and one predominantly marine. Remarkably, all the isolates from our study sites show high phylogenetic similarity based on six loci (LSU and SSU rDNA, RPB2, TEF1-α, ß-tub and ITS region), regardless of their provenance within a broad geographical distribution. They group within the known marine-origin species, a finding that provides a possible link to the evolution of the alkaliphilic trait in the Emericellopsis lineage. We tested the capacities of all newly isolated strains, and the few available reference ex-type cultures, to grow over wide pH ranges. The growth performance varied among the tested isolates, which showed differences in growth rate as well as in pH preference. Whereas every newly isolated strain from soda soils was extremely alkalitolerant and displayed the ability to grow over a wide range of ambient pH (range 4-11.2), reference marine-borne and terrestrial strains showed moderate and no alkalitolerance, respectively. The growth pattern of the alkalitolerant Emericellopsis isolates was unlike that of the recently described and taxonomically unrelated alkaliphilic Sodiomyces alkalinus, obtained from the same type of soils but which showed a narrower preference towards high pH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...